Bayesian Probabilistic Numerical Methods

Numerical Disintegration and Pipelines

Jon Cockayne June 6, 2017

(Re)introduction

Q1: How can we access μ^a ?

Unless probabilistic numerical methods "agree" about what their uncertainty means, they cannot be composed coherently.

Modelling Electro-Mechanics in the Heart

Modelling Electro-Mechanics in the Heart

Q2: when is it "legal" to compose Bayesian PNM in pipelines?

Numerical Disintegration

Recall, the issue:

$$\mathcal{X}^a = \{ u \in \mathcal{X} : A(u) = a \}$$

 $\mu(X^a) = 0$

Recall, the issue:

$$\mathcal{X}^a = \{ u \in \mathcal{X} : A(u) = a \}$$

 $\mu(X^a) = 0$

which means...

$$\nexists \frac{\mathrm{d}\mu^a}{\mathrm{d}\mu}$$

Design an algorithm for approximately sampling μ^a .

Design an algorithm for approximately sampling μ^a .

Two sources of error

• Intractability of μ^a ("Numerical Disintegration")

Design an algorithm for approximately sampling μ^a .

Two sources of error

- Intractability of μ^a ("Numerical Disintegration")
- Intractability of non-Gaussian priors ("prior truncation")

Numerical Disintegration

Prior Truncation

Introduce the $\delta\text{-relaxed}$ measure $\mu^a_{\delta}...$

$$\frac{\mathrm{d}\mu_{\delta}^{a}}{\mathrm{d}\mu} \propto \phi\left(\frac{\|A(u) - a\|_{\mathcal{A}}}{\delta}\right)$$

Introduce the δ -relaxed measure μ_{δ}^a ...

$$\frac{\mathrm{d}\mu_{\delta}^{a}}{\mathrm{d}\mu} \propto \phi\left(\frac{\|A(u) - a\|_{\mathcal{A}}}{\delta}\right)$$

 $\phi: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ a relaxation function chosen so that:

- $\phi(0) = 1$
- $\phi(r) \to 0$ as $r \to \infty$.

"Ideal" Radon-Nikodym derivative

$$\frac{\mathrm{d}\mu^a}{\mathrm{d}\mu} \propto \mathbb{I}(u \in \mathcal{X}^a)^{"}$$

Example Relaxation Functions

$$\phi(r) = \mathbb{I}(r < 1) \qquad \qquad \phi(r) = \exp(-r^2)$$

Example Relaxation Functions

$$\phi(r) = \mathbb{I}(r < 1) \qquad \qquad \phi(r) = \exp(-r^2)$$

Uniform noise over $B_{\delta}(a)$

Gaussian noise with s.d. $\propto \delta$

To sample μ_{δ}^{a} we take inspiration from rare event simulation and use tempering schemes to sample the posterior.

To sample μ_{δ}^{a} we take inspiration from rare event simulation and use tempering schemes to sample the posterior.

Set $\delta_0 > \delta_1 > \ldots > \delta_N$ and consider

 $\mu_{\delta_0}^a, \ \mu_{\delta_1}^a, \ \ldots, \ \mu_{\delta_N}^a$

To sample μ_{δ}^{a} we take inspiration from rare event simulation and use tempering schemes to sample the posterior.

Set $\delta_0 > \delta_1 > \ldots > \delta_N$ and consider

 $\mu^a_{\delta_0}, \ \mu^a_{\delta_1}, \ \ldots, \ \mu^a_{\delta_N}$

- $\mu_{\delta_0}^a$ is the prior and easy to sample.
- $\mu^a_{\delta_N}$ has δ_N close to zero and is hard to sample.
- Intermediate distributions define a "ladder" which takes us from prior to posterior.

Consider

$$-\frac{d^2}{dx^2}u(x) = \sin(2\pi x) \qquad x \in (0,1)$$
$$u(x) = 0 \qquad x = 0, x = 1$$

Consider

$$-\frac{d^2}{dx^2}u(x) = \sin(2\pi x) \qquad x \in (0,1)$$
$$u(x) = 0 \qquad x = 0, x = 1$$

• Use a Gaussian prior on u(x).

Consider

$$-\frac{d^2}{dx^2}u(x) = \sin(2\pi x) \qquad x \in (0,1)$$
$$u(x) = 0 \qquad x = 0, x = 1$$

- Use a Gaussian prior on u(x).
- Impose boundary conditions explicitly.
- Impose interior conditions at x = 1/3, x = 2/3.

Consider

$$-\frac{d^2}{dx^2}u(x) = \sin(2\pi x) \qquad x \in (0,1)$$
$$u(x) = 0 \qquad x = 0, x = 1$$

- Use a Gaussian prior on u(x).
- Impose boundary conditions explicitly.
- Impose interior conditions at x = 1/3, x = 2/3.
- Construct the posterior using ND with $\delta \in \{1.0, 10^{-2}, 10^{-4}\}$.
- Use $\phi(r) = \exp(-r^2)$.

In what follows, on the **left** are samples from the posterior μ_{δ}^{a} in \mathcal{X} -space.

On the **right** are contours of

$$\phi\left(\frac{\|A(u) - a\|_{\mathcal{A}}}{\delta}\right)$$

in \mathcal{A} -space.

Assume ${\mathcal X}$ has a countable basis $\{\phi_i\},\;i=0,\ldots,\infty.$ Then for any $u\in {\mathcal X}$

$$u(x) = \sum_{i=0}^{\infty} u_i \phi_i(x)$$

Assume \mathcal{X} has a countable basis $\{\phi_i\}$, $i = 0, \dots, \infty$. Then for any $u \in \mathcal{X}$

$$u(x) = \sum_{i=0}^{\infty} \gamma_i \xi_i \phi_i(x)$$

Different ξ_i require different γ for almost-sure convergence...

- ξ_i IID Uniform, $\gamma \in \ell^1$
- ξ_i IID Gaussian, $\gamma \in \ell^2$
- ξ_i IID Cauchy, $\gamma \in \ell^2$

Assume \mathcal{X} has a countable basis $\{\phi_i\}$, $i = 0, \dots, \infty$. Then for any $u \in \mathcal{X}$

$$u^{N}(x) = \sum_{i=0}^{N} \gamma_{i} \xi_{i} \phi_{i}(x)$$

Different ξ_i require different γ for almost-sure convergence...

- ξ_i IID Uniform, $\gamma \in \ell^1$
- ξ_i IID Gaussian, $\gamma \in \ell^2$
- ξ_i IID Cauchy, $\gamma \in \ell^2$

For practical computation we truncate to N terms.

All results show weak convergence framed in terms of an abstract integral probability metric¹:

$$d_{\mathcal{F}}(\nu,\nu') = \sup_{\|f\|_{\mathcal{F}} \le 1} \left|\nu(f) - \nu'(f)\right|$$

¹Müller [1997]

All results show weak convergence framed in terms of an abstract integral probability metric¹:

$$d_{\mathcal{F}}(\nu,\nu') = \sup_{\|f\|_{\mathcal{F}} \le 1} \left| \nu(f) - \nu'(f) \right|$$

Results are generic to A(u), μ .

All results show weak convergence framed in terms of an abstract integral probability metric¹:

$$d_{\mathcal{F}}(\nu,\nu') = \sup_{\|f\|_{\mathcal{F}} \le 1} \left| \nu(f) - \nu'(f) \right|$$

Results are generic to A(u), μ .

Examples: Total Variation, Wasserstein

Theorem

Assume that

$$d_{\mathcal{F}}(\mu^{a},\mu^{a'}) \leq C_{\mu} \left\| a - a' \right\|^{lpha}$$

for some C_{μ}, α constant and $A_{\#}\mu$ -almost-all $a, a' \in \mathcal{A}$.

Theorem

Assume that

$$d_{\mathcal{F}}(\mu^a,\mu^{a'}) \le C_{\mu} \left\| a - a' \right\|^{\alpha}$$

for some C_{μ}, α constant and $A_{\#}\mu$ -almost-all $a, a' \in \mathcal{A}$.

Then, for small δ

 $d_{\mathcal{F}}(\mu_{\delta}^{a},\mu^{a}) \leq C_{\mu} (1+C_{\phi}) \delta^{\alpha}$

for $A_{\#}\mu$ -almost-all $a \in \mathcal{A}$

Denote by $\mu^a_{\delta,N}$ the posterior distribution given by

$$\frac{\mathrm{d}\mu^a_{\delta,N}}{\mathrm{d}\mu} \propto \phi\left(\frac{\|A \circ P_N(u) - a\|_{\mathcal{A}}}{\delta}\right)$$

Denote by $\mu^a_{\delta,N}$ the posterior distribution given by

$$\frac{\mathrm{d}\mu_{\delta,N}^a}{\mathrm{d}\mu} \propto \phi\left(\frac{\|A \circ P_N(u) - a\|_{\mathcal{A}}}{\delta}\right)$$

Denote by $\mu^a_{\delta,N}$ the posterior distribution given by

$$\frac{\mathrm{d}\mu^a_{\delta,N}}{\mathrm{d}\mu} \propto \phi\left(\frac{\|A \circ P_N(u) - a\|_{\mathcal{A}}}{\delta}\right)$$

Assume that

$$||A(u) - A \circ P_N(u)|| \le \exp(m ||u||_{\mathcal{X}}) \Phi(N)$$

Denote by $\mu^a_{\delta,N}$ the posterior distribution given by

$$\frac{\mathrm{d}\mu_{\delta,N}^a}{\mathrm{d}\mu} \propto \phi\left(\frac{\|A \circ P_N(u) - a\|_{\mathcal{A}}}{\delta}\right)$$

Assume that

$$||A(u) - A \circ P_N(u)|| \le \exp(m ||u||_{\mathcal{X}}) \Phi(N)$$

Then under certain assumptions it can be shown² that:

 $d_{\mathcal{F}}(\mu^{a},\mu^{a}_{\delta,N}) \leq C_{\mu}(1+C_{\phi})\delta^{\alpha} + C_{\delta}\Phi(N)$

²Cockayne et al. [2017]

Denote by $\mu^a_{\delta,N}$ the posterior distribution given by

$$\frac{\mathrm{d}\mu_{\delta,N}^a}{\mathrm{d}\mu} \propto \phi\left(\frac{\|A \circ P_N(u) - a\|_{\mathcal{A}}}{\delta}\right)$$

Assume that

$$||A(u) - A \circ P_N(u)|| \le \exp(m ||u||_{\mathcal{X}}) \Phi(N)$$

Then under certain assumptions it can be shown² that:

$$d_{\mathcal{F}}(\mu^a, \mu^a_{\delta,N}) \le C_{\mu}(1 + C_{\phi})\delta^{\alpha} + C_{\delta}\Phi(N)$$

Thus, we have convergence with δ provided $C_{\delta}\Phi(N)$ is controlled.

²Cockayne et al. [2017]

Numerical Disintegration

Numerical Example

Painlevé's First Transcendental

$$u''(x) - u(x)^2 = -x$$

 $u(0) = 0$
 $u(x) \rightarrow \sqrt{x} \text{ as } x \rightarrow \infty$

Painlevé's First Transcendental

$$u''(x) - u(x)^2 = -x$$
$$u(0) = 0$$
$$u(10) = \sqrt{10}$$

Painlevé's First Transcendental

$$u''(x) - u(x)^2 = -x$$
$$u(0) = 0$$
$$u(10) = \sqrt{10}$$

We use $\phi(x) = \exp(-x^2)$, and define a schedule of 1600 δ from 10 to 10^{-4} . Following results are based on equi-spaced t_i , i = 1, ..., 15, and generated with an SMC algorithm based upon a Cauchy prior.

Pipelines

Example: Split Integration

$$\int_0^1 u(x) \mathrm{d}x = \int_0^{0.5} u(x) \mathrm{d}x + \int_{0.5}^1 u(x) \mathrm{d}x$$

Observations $\{u(x_1), \ldots, u(x_{2m})\}$, where $u_1 = 0, u_m = 0.5, u_{2m} = 1$

Example: Split Integration

$$\int_0^1 u(x) \mathrm{d}x = \int_0^{0.5} u(x) \mathrm{d}x + \int_{0.5}^1 u(x) \mathrm{d}x$$

Observations $\{u(x_1), \ldots, u(x_{2m})\}$, where $u_1 = 0, u_m = 0.5, u_{2m} = 1$

Example: Split Integration

$$\int_0^1 u(x) \mathrm{d}x = \int_0^{0.5} u(x) \mathrm{d}x + \int_{0.5}^1 u(x) \mathrm{d}x$$

Observations $\{u(x_1), \ldots, u(x_{2m})\}$, where $u_1 = 0, u_m = 0.5, u_{2m} = 1$

When is the output of the pipeline Bayesian?

The abstract structure of the graph allows us to establish a coherence condition

The dependency graph of a pipeline is obtained by deleting the method nodes and connecting their inputs directly to their outputs.

The abstract structure of the graph allows us to establish a coherence condition

The dependency graph of a pipeline is obtained by deleting the method nodes and connecting their inputs directly to their outputs.

Coherence

Definition

A prior is coherent for the dependency graph if Y_k is conditionally independent of Y_i given Y_j .

Here i, j < k, i are non-parent nodes and j are parent nodes.

Theorem

A pipeline is Bayesian for its output Qol if:

- 1. The prior is coherent for the dependence graph.
- 2. The composite PNM are Bayesian.

Is $\int_{0.5}^{1} u(x) dt$ independent of $u(x_1), \ldots, u(x_{m-1})$?

Is $\int_{0.5}^{1} u(x) dt$ independent of $u(x_1), \ldots, u(x_{m-1})$? Sometimes - e.g. a Wiener process prior.

Is $\int_{0.5}^{1} u(x) dt$ independent of $u(x_1), \ldots, u(x_{m-1})$?

Sometimes - e.g. a Wiener process prior.

Sometimes not - e.g. if μ implies a Wiener process on $u^{(s)}(x)$.

Conclusions

We have seen...

- A method for approximately sampling from μ^a .
- Theoretical results proving asymptotic convergence of that sampler.
- Coherence conditions for composing Bayesian PNM into a Bayesian pipeline.

Numerical disintegration is highly inefficient compared to classical numerical methods (and even conjugate PNM).

Numerical disintegration is highly inefficient compared to classical numerical methods (and even conjugate PNM).

This is not intended to be a practical numerical method, but a framework for comparing other "approximate Bayesian" methods to the ideal.

Numerical disintegration is highly inefficient compared to classical numerical methods (and even conjugate PNM).

This is not intended to be a practical numerical method, but a framework for comparing other "approximate Bayesian" methods to the ideal.

Next steps:

- Make the algorithm more efficient?
- Explore more efficient approximations to the posterior

Thanks!

- J. Cockayne, C. Oates, T. Sullivan, and M. Girolami. Bayesian probabilistic numerical methods, 2017.
- A. Müller. Integral probability metrics and their generating classes of functions. Adv. in Appl. Probab., 29(2):429–443, 1997. ISSN 0001-8678. doi: 10.2307/1428011. URL http://dx.doi.org/10.2307/1428011.