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(Re)introduction



(Re)introduction

“Data” A(u) = au ∼ µ Q#µ
a

“Prior”

“Information Equation” “Posterior”
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Q1: How can we access µa?
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(Re)introduction

Unless probabilistic numerical methods “agree” about what their uncertainty means,
they cannot be composed coherently.
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Modelling Electro-Mechanics in the Heart
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Modelling Electro-Mechanics in the Heart
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Q2: when is it “legal” to compose Bayesian PNM in
pipelines?
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Numerical Disintegration



Numerical Disintegration

Recall, the issue:

X a = {u ∈ X : A(u) = a}

µ(Xa) = 0

which means…

∄
dµa

dµ
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Our Approach

Design an algorithm for approximately sampling µa.

Two sources of error

• Intractability of µa (“Numerical Disintegration”)
• Intractability of non-Gaussian priors (“prior truncation”)
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Three Considerations

Numerical Disintegration Prior Truncation
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Numerical Disintegration

Introduce the δ-relaxed measure µa
δ…

dµa
δ

dµ ∝ ϕ

(
∥A(u)− a∥A

δ

)

ϕ : R+ → R+ a relaxation function chosen so that:

• ϕ(0) = 1
• ϕ(r) → 0 as r → ∞.
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Numerical Disintegration: Intuition

“Ideal” Radon–Nikodym derivative

“dµa

dµ ∝ I(u ∈ X a)
”
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Example Relaxation Functions

ϕ(r) = I(r < 1) ϕ(r) = exp(−r2)
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Example Relaxation Functions

ϕ(r) = I(r < 1)

Uniform noise over Bδ(a)

ϕ(r) = exp(−r2)

Gaussian noise with s.d. ∝ δ
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Tempering for Sampling µa
δ

To sample µa
δ we take inspiration from rare event simulation and use tempering

schemes to sample the posterior.

Set δ0 > δ1 > . . . > δN and consider

µa
δ0 , µ

a
δ1 , . . . , µ

a
δN

• µa
δ0

is the prior and easy to sample.
• µa

δN
has δN close to zero and is hard to sample.

• Intermediate distributions define a “ladder” which takes us from prior to posterior.
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Example: Poisson’s Equation

Consider

− d2

dx2 u(x)= sin(2πx) x ∈ (0, 1)

u(x)= 0 x = 0, x = 1

• Use a Gaussian prior on u(x).
• Impose boundary conditions explicitly.
• Impose interior conditions at x = 1/3, x = 2/3.
• Construct the posterior using ND with δ ∈

{
1.0, 10−2, 10−4}.

• Use ϕ(r) = exp(−r2).
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Example: Poisson’s Equation

In what follows, on the left are samples from the posterior µa
δ in X -space.

On the right are contours of
ϕ

(
∥A(u)− a∥A

δ

)
in A-space.
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Example: Poisson’s Equation
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Three Considerations

Numerical Disintegration Prior Truncation

Sampler Convergence
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Prior Construction

Assume X has a countable basis {ϕi}, i = 0, . . . ,∞. Then for any u ∈ X

u(x) =
∞∑

i=0
uiϕi(x)

Different ξi require different γ for almost-sure convergence…

• ξi IID Uniform, γ ∈ ℓ1

• ξi IID Gaussian, γ ∈ ℓ2

• ξi IID Cauchy, γ ∈ ℓ2

For practical computation we truncate to N terms.
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Numerical Disintegration Prior Truncation

Sampler Convergence

18



Convergence, but in what metric?

All results show weak convergence framed in terms of an abstract integral probability
metric1:

dF (ν, ν ′) = sup
∥f∥F≤1

∣∣ν(f)− ν ′(f)
∣∣

Results are generic to A(u), µ.

Examples: Total Variation, Wasserstein

1Müller [1997]
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Convergence of µa
δ

Theorem
Assume that

dF (µa, µa′
) ≤ Cµ

∥∥a − a′
∥∥α

for some Cµ, α constant and A#µ-almost-all a, a′ ∈ A.

Then, for small δ
dF (µa

δ , µ
a) ≤ Cµ (1 + Cϕ) δ

α

for A#µ-almost-all a ∈ A
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Total Error

Denote by µa
δ,N the posterior distribution given by

dµa
δ,N

dµ ∝ ϕ

(
∥A ◦ PN(u)− a∥A

δ

)
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Total Error

Denote by µa
δ,N the posterior distribution given by

dµa
δ,N

dµ ∝ ϕ

(
∥A ◦ PN(u)− a∥A

δ

)
Assume that

∥A(u)− A ◦ PN(u)∥ ≤ exp(m ∥u∥X )Φ(N)

Then under certain assumptions it can be shown2 that:

dF (µa, µa
δ,N) ≤ Cµ(1 + Cϕ)δ

α + CδΦ(N)

Thus, we have convergence with δ provided CδΦ(N) is controlled.

2Cockayne et al. [2017]
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Numerical Disintegration

Numerical Example



Painlevé’s First Transcendental

u′′(x)− u(x)2 = −x
u(0) = 0
u(x) →

√
x as x → ∞
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Painlevé’s First Transcendental

u′′(x)− u(x)2 = −x
u(0) = 0

u(10) =
√

10

We use ϕ(x) = exp(−x2), and define a schedule of 1600 δ from 10 to 10−4. Following
results are based on equi-spaced ti, i = 1, . . . , 15, and generated with an SMC
algorithm based upon a Cauchy prior.

22



Painlevé: Posterior Measures
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Painlevé: Posterior Measures
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Painlevé: Posterior Measures
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Painlevé: Posterior Measures
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Pipelines



Example: Split Integration

∫ 1

0
u(x)dx =

∫ 0.5

0
u(x)dx +

∫ 1

0.5
u(x)dx

Observations {u(x1), . . . , u(x2m)}, where u1 = 0, um = 0.5, u2m = 1

u(x1), . . . , u(xm−1)

u(xm)

u(xm+1), . . . , u(x2m)

B1(µ, ·)

B2(µ, ·)

∫ 0.5
0 u(x)dt

∫ 1
0.5 u(x)dt

B3(µ, ·)
∫ 1

0 u(x)dt

When is the output of the pipeline Bayesian?
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Dependence Graphs

The abstract structure of the graph allows us to establish a coherence condition

1

2

3

1

2
1

2

1

2

Pipeline

The dependency graph of a pipeline is obtained by deleting the method nodes and
connecting their inputs directly to their outputs.
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Dependency Graph

The dependency graph of a pipeline is obtained by deleting the method nodes and
connecting their inputs directly to their outputs.
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Coherence

1

2

3

4

5

6

Definition
A prior is coherent for the dependency graph if Yk is conditionally independent of Yi
given Yj.

Here i, j < k, i are non-parent nodes and j are parent nodes.
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Bayesian Pipelines

Theorem
A pipeline is Bayesian for its output QoI if:

1. The prior is coherent for the dependence graph.
2. The composite PNM are Bayesian.
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Split Integration: Coherence

u(x1), . . . , u(xm−1)

u(xm)

u(xm+1), . . . , u(x2m)

B1(µ, ·)

B2(µ, ·)

∫ 0.5
0 u(x)dt

∫ 1
0.5 u(x)dt

B3(µ, ·)
∫ 1

0 u(x)dt

Is
∫ 1

0.5 u(x) dt independent of u(x1), . . . , u(xm−1)?

Sometimes - e.g. a Wiener process prior.

Sometimes not - e.g. if µ implies a Wiener process on u(s)(x).
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Conclusions



Conclusions

We have seen…

• A method for approximately sampling from µa.
• Theoretical results proving asymptotic convergence of that sampler.
• Coherence conditions for composing Bayesian PNM into a Bayesian pipeline.
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More to come

Numerical disintegration is highly inefficient compared to classical numerical methods
(and even conjugate PNM).

This is not intended to be a practical numerical method, but a framework for
comparing other “approximate Bayesian” methods to the ideal.

Next steps:

• Make the algorithm more efficient?
• Explore more efficient approximations to the posterior
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Thanks!
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